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The key theorem of Joyal & Tierney [1] is the descent theorem for geometric 
morphisms of Grothendieck toposes (over a fixed base topos Y). This theorem says 
that open surjections are effective descent morphisms - a fact which has remarkable 
consequences (see ioc. cit.). Joyal and Tierney prove the descent theorem by first 
developing descent theory for 'modules' (suplattices) over locales, parallel to des- 
cent theory for commutative rings. In this way they provide an algebraic explanation 
for the theorem. The purpose of  this note is to give a direct proof of the descent 
theorem. 

1. Formulation of the descent theorem (see Joyal & Tierney [1]) 

Let ~ ~ ~ be a geometric morphism of Grothendieck toposes over 5 e, and 
consider the diagram 

P12 
1, 

P23 Pl f 
~ x ~ ¢ x ~  ~'~ x ~  .~ ~,,¢' ~ .  

PI3 P2 

Descent-data on an object X e  8 consists of a morphism 0: p~(X)--,p~(X) such that 
t~*(0)=id and p~3(0)=P~3(0)op~'2(0)(the cocycle condition). Des(f )  denotes the 

• " - w h r  h" ~ X '  ' categryo of pmrs ( , ) ,X.  0 0 descent data on X e ¢ ,  e e morp lsms (S, 0) ( ,0 ) 
are morphisms XJ--~X ' in ¢ which commute with descent-data in the obvious way. 
Any object f*(D),  D e  ~, can be equipped with descent-data in a canonical way, 
and this gives a commutative diagram 
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' Des( f )  

u 

where U is the forgetful functor, f is called an effective descent morphism if 
~ D e s ( f )  is an equivalence of categories. The descent theorem states that every 

open surjection is an effective descent morphism. 
Note that brv working inside ~, it suffices to prove this theorem for the special 

case that 8 - - - ~  is the canonical geometric morphism ~ v ,S e; accordingly, we 
will only consider this case. 

2. Some preliminary remarks 

Let 8 = Sh(C), C a site in Y. Then a site for 6 ~ x 6" = ~ x v,6 ~ is given by the 
product-category C x C with the coarsest topology making the projections 

P1 
C x C  ;C  

/'2 

continuous, i.e. the topology is generated by covers of  the form 

(f~, id) (id, gj) 
{(Ci, D) '(C,D)}i and {(C, Dj) ,(C,D)}j, 

f, g~ 
where {Ci--.C}i and {Dj-- .D}j  are covers in C. The inverse image p~ of the 

• • P l  • • geometric morphism ~" x ¢ - - . ~  comes from composing with PI ,  followed by 
sheafification. Similarly for p~. The inverse image t~* of the diagonal g a ,  o~ x ~' 
comes from composing with d : C - ~ C x C  followed by sheafification: given 
Y~ Sh(C x C) = ~ x e*, tJ*(Y) is the sheaf associated to the presheaf C,-. Y(C, C). So 
for Y=p~'(X), ~*p~(X)--X, and we have a canonical natural transformation t/, 
tic :p~(X)(C, C)~X(C),  which is the unit of the associated sheaf adjunction. 
Similarly for p~. 

3. The case of connected locally connected geometric morphisms 

As a warming up exercise, let us point out that the descent theorem is trivial when 
, ~  is connected, locally connected (this is not needed for the proof of the 

general case). Indeed, let C be a molecular site for o* (with a terminal, since y is con- 
nected). Constant presheaves on C are sheaves, and p~', p~' are just given by com- 
position with Pl and P2 respectively (no sheafification needed). Now suppose X is 
a sheaf on C, with descent-data X o Pl ° ' X  o P2. This means that we are given 



An elementary proof o f  the descent theorem 187 

functions OCD " X ( C ) ~ X ( D )  for every pair of objects C and D of C. Naturality of 
0 means that for any C ' ~  C, D' g, D, X(g) o Oco = OC'D' o X( f ) .  c~*(8) = id 
means that for any C, Occ: X(C)-'--,X(C) is the identity. And the cocycle condition 
means that for any triple C,/9, E of objects of C, PoE o OCD = OCE. So in particular, 
taking C=E, OCD is inverse to ODC, i.e. 0 is an isomorphism. From this it easily 
follows that X is isomorphic to the constant sheaf ),*(X(1)): define 

X ,  ' 

(a 

by the components tpc = Oic; ~l] C ~-Oc1. ~ and ~ are inverse to each other, and are 
natural in C by naturality of  0. It remains to show that any morphism 
7*(T) r ,  y*(T') which is compatible with the canonical descent-data comes from 
a map T-~ T'. But this is clear from the fact that y* is full and faithful. 

4. A proof of the descent theorem 

This is essentially the same as 3, but we have to keep track of  sheafification all 
the time. Let ~ y - ] be an open surjection, and let C be an open site for ¢; i.e. 
C has a terminal object 1, and every cover in C is inhabited. We have to show that 

(a) every object X e  ~ equipped with descent-data is isomorphic to a constant 

sheaf; 
(b) every morphism y * ( T ) - - , r * ( T ' )  which commutes with the canonical 

descent-data is of the form z = y*(f) .  
• • Pi 

To prove (a), choose X e ¢  with descent-data 0. Write e~×~ ,¢  and 
~ × ¢ x ~ P i  ¢ for the projections. Identifyingp~(X)(C, D) with p~(X)(D, C) in the 
canonical way, we may regard 0 as a system of functions (in Y) 

OcD " p?(X)(C, D ) ~ p?(X)(D, C) 

which are natural in C,D: for C'-~C and D ' ~ D ,  

OCD 
p~(X)(C,D) , p~(X)(D,C) 

OC, D, 
pl (X)(C', D') , p~(X)(D; C') 

commutes• This implies that OCD is determined by its restriction OCD o i l ,  

X(C) c. i, 'p~(X)(C,D) OCD 'p~(X)(D,C) 

for which we also write OCD. The condition ~*(0)= id means that 
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OCC 
p?(X)(C, C) , p?tX)(C, C) 

x ( c )  

commutes for every C, while the cocycle condition means that 

p?(x)(c,  D, E) 

OCE(D) 

p?(X)(E, C, D) 

OCD(E) 
, p?(X)(D, C, E) 

I ODE(C) 
, p?(X)(E, 19, C) 

where OCDte) is the obvious map induced by OCD, etc. 
We will use the following lemma, to be proved below. 

Lemma. For X e # = Sh(C), and objects C, D, E o f  C, the canonical square 

p?(X)(C,D) c- , p?(X)(C,D,E) 

J 
X(C) c , pF(X)(C, E) 

is a pullback in 5". 

Let S= {xeX(l)[O11(il(x)) = il(x)}, where i 1 • X(1)~p~(X)(1, 1) as above. We 
claim that X=~,*(S) via 

x '  , ~,*(S),  
¢/ 

where ~ is the transpose of  S ~ X ( 1 ) ,  and ¢/is the map defined by the components 

x ( c )  ~ r * ( s ) ( c )  

Ocl 
p?(X)(X, 1) , p~(X)(1, C) 

where Jc is the obvious embedding, natural in C. The nontrivial thing is to show 
that Pc is well-defined, i.e. that Ocl Oil factors through Jc. (Natural!ty of Pc  is 
then obvious.) So take x e X ( C ) ,  and write y =  OCl(il(X))ep~(X)(l, C). We have to 
show that y "locally does not depend on the C-coordinate". v is given as a compati- 
ble family {Ya}a, y~eX(Da), for a cover {(D~,Ca) ( O " ' f ' ) , ( 1 , C ) } a ~  in CxC.  

~'c 



An elementary proof of  the descent theorem 189 

Fix a,  and let xa=xlfc, eX(Ca). Then Oc~o,,(xa)=y,~, and by the cocycle condi- 
tion, we have for any object E of  C that Oc.tr(xa) = OD.E(Yc~) in p~(X)(E, De. Ca). 
So by the lemma, 

OcoE(Xa) = Oz oe(Ya) e X(E) .  

Choosing E=Ca,  we find that Ococ,,(xa)eX(Ca), and hence since r/c, is the 
identity on X(Cc~) c-i~-L--~p~(X)(Ca, Ca), that Oc,,c,,(xa) =xc,. Now let E run over all 
the objects Dp, ,8 ~ ~¢. Clearly by naturality of O, if 

F 1 

Dy 

then 8C,,,o~(X,~)Ih=Oc~,E(Xa)=OC,,D~(Xa)lk, so since {D~--*l}peg is a cover in C 
(by openness), there is a unique za ~X(1) with za 1D/~ = Oc~Dp(Xa). So by naturality 
of 0 again, 

Za = OC~I (Xa) E X(1) ,  

while moreover since Oc~c.(x,~) = x,~, 

l Ca= xa e 

We claim that {Za}a determines an element z e 7"(S)(C). (Note that clearly if this 
is so, Jc(z)= Oct(X).) Indeed, the za are compatible in the sense that if 

E C 

commutes, then Za=Za, eX(1)  - this is obvious from naturality of 0. Moreover, 
each zaeS .  For if E is any object of C, we have 01E(Za)=OC~E(Xa) in 
P~(X)(1, Ca, E)  by the cocycle condition, so by the lemma, 01E(za)eX(E). Since 
rh IX(l) is the identity, we find for E =  1 that 011(za)=za. This proves that ~u c is 
well-defined. 

It is now clear that ¢ and g/are inverse to each other: One way round, it suffices 
to show that ~,ltPZ(s)=s for s e S .  But ~l(s)=seX(1) ,  and Oll(S)=il(s) by defini- 
tion of S, so this is clear. The other way round, take x eX(C) .  Then 
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~'c(X) e y*(S)(C) is the element z as above with z l fa =za • SCX(1) .  So by defini- 
t ion,  ~pc(z)•X(C) is given by tpc(z) l f~=za lC  a. But z~lCa=x a as we have seen. 
So ~Pc(Z)=x, i.e. (0c¢/c=id.  This proves (a). 

To prove (b), suppose y*(T) ~ , y*(T ' )  is compatible with the canonical descent- 
data  0 and 0' on y *(T), ~, *(T'). It is trivial to check that  T = { t • ~, *(T)(1) 1 011 ( t )  = t }, 
and similarly for T'. So if t •Tcy*(T) (1) ,  then O[lzl(t)=z,(Oll(t))=zl(t), so 
% (t) • T'. Therefore z comes from a map T ~ T', proving (b). 

It remains to prove the lemma. To this end, suppose x•p~(X)(C,D) and 
y•p~(X)(C,E)  are equal in p~(X)(C,D,E). Write x={xa}a ,  Xa•X(Ca) a com- 
patible family for a cover ~ = {(C~,Da)~(C,D)}a~ in C x C, and y =  {YB}~, 
y~eX(CB), a compatible family for a cover ~/={(CB, Ep)-~(C,E)}p~ ~ in C x C .  
Equali ty of x and y in p~(X)(C, D, E) means that  there is a common refine- 
ment ~/= {(Ci, Di, Ei)~(C,D,E)}i~I of {(C~,D~,E)-~(C,D,E)} a and 
{(C~,D,E~)~(C,D,E)}~ in C × C x C  on which x and y agree. Replacing ~' by 

{(Ci, Di) ~ (C, D)} and ~ by {(Ci, Ei)-~ (C, E)} i we get the following notationaUy 
more manageable situation: we are given xi • X(Ci), Yi e X(Ci), such that  whenever 
we have a commutative diagram 

(Ci, Di) 

f 
(A,B) 

(Cj, Dj) 

(C,D) 

then xi 1A =xj 1A, and a similar condi t ion for compatibil i ty of  {Yi} with D replac- 
ed by E. Moreover, since x and y agree on the cover ~ ,  xi =Yi for every i. We now 
have to show that  x = {xi} comes from an element of  X(C), i.e. that  {xi} is com- 
patible for the cover {Ci ~ C} in C. So suppose 

A C 

commutes.  Take a cover {(Pa, Qa, Ra)~(  A, Dis, Ei2)}a refining ~ ;  i.e. for each a 
there is a Ja • I such that  

/ I  

f 
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(Pa, Q~, Ra) ' (A, Di,, ei2) 

(cjo,DJo, eio) 
commutes. By openness, 
over, 

xi, 1 P~-- xjo 1P~ 

=YjolPa 
=Yi21Pa 

=Xi21Pa 

, (C,D,E) 

{(P~,Qa)--'(A, Di,)}a is a cover in C x C ,  while more- 

(by compatibility of {xi} over (C, D)) 

(by x = y  over (C, D, E))  

(by compatibility of {Y i} over (C, E)) 

(by x = y  over (C, D, E)). 

The family {Pa~A}a covers A, so xi, 1A =xi21A. This completes the proof of the 
lemma. 
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